The Second-Order Born Approximation in Diffuse Optical Tomography
نویسنده
چکیده
Diffuse optical tomography is used to find the optical parameters of a turbidmediumwith infrared red light. The problem is mathematically formulated as a nonlinear problem to find the solution for the diffusion operator mapping the optical coefficients to the photon density distribution on the boundary of the region of interest, which is also represented by the Born expansion with respect to the unperturbed photon densities and perturbed optical coefficients. We suggest a new method of finding the solution by using the second-order Born approximation of the operator. The error analysis for the suggested method based on the second-order Born approximation is presented and compared with the conventional linearized method based on the first-order Born approximation. The suggested method has better convergence order than the linearized method, and this is verified in the numerical implementation.
منابع مشابه
Uniqueness, Born Approximation, and Numerical Methods for Diffuse Optical Tomography
Diffuse optical tomogrpahy (DOT) is to find optical coefficients of tissue using near infrared light. DOT as an inverse problem is described and the studies about unique determination of optical coefficients are summarized. If a priori information of the optical coefficient is known, DOT is reformulated to find a perturbation of the optical coefficients inverting the Born expansion which is an ...
متن کاملBorn expansion and Fréchet derivatives in nonlinear Diffuse Optical Tomography
The nonlinear Diffuse Optical Tomography (DOT) problem involves the inversion of the associated coefficient-to-measurement operator, which maps the spatially varying optical coefficients of turbid medium to the boundary measurements. The inversion of the coefficient-to-measurement operator is approximated by using the Fréchet derivative of the operator. In this work, we first analyze the Born e...
متن کاملCorrections to linear methods for diffuse optical tomography using approximation error modelling
Linear reconstruction methods in diffuse optical tomography have been found to produce reasonable good images in cases in which the variation in optical properties within the medium is relatively small and a reference measurement with known background optical properties is available. In this paper we examine the correction of errors when using a first order Born approximation with an infinite s...
متن کاملAn Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملIterative boundary method for diffuse optical tomography.
The recent application of tomographic methods to three-dimensional imaging through tissue by use of light often requires modeling of geometrically complex diffuse-nondiffuse boundaries at the tissue-air interface. We have recently investigated analytical methods to model complex boundaries by means of the Kirchhoff approximation. We generalize this approach using an analytical approximation, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012